
Molecular triangulation: Bridging linkage and
molecular-network information for identifying
candidate genes in Alzheimer’s disease
Michael Krauthammera,b,c, Charles A. Kaufmannd, T. Conrad Gilliamb,d,e, and Andrey Rzhetskya,b,f,g

aDepartment of Biomedical Informatics, bColumbia Genome Center, Departments of dPsychiatry and eGenetics and Development, and fCenter for
Computational Biology and Bioinformatics, Columbia University, New York, NY 10032

Edited by Michael H. Wigler, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, and approved September 7, 2004 (received for review June 16, 2004)

A major challenge in human genetics is identifying the molecular
basis of common heritable disorders. In contrast to rare single-gene
diseases, multifactorial disorders are thought to arise from the
combined effect of multiple gene variants, such that any single
variant may have only a modest effect on disease susceptibility. We
present a method to identify genes that may harbor a significant
proportion of the genetic variation that predisposes individuals to
a given multifactorial disorder. First, we perform an automated
literature analysis that predicts physical interactions (edges)
among candidate disease genes (seed nodes, selected on the basis
of prior information) and other molecular entities. We derive
models of molecular networks from this analysis and map the seed
nodes to them. We then compute the graph-theoretic distance (the
minimum number of edges that must be traversed) between the
seed nodes and all other nodes in the network. We assume that
nodes that are found in close proximity to multiple seed nodes are
the best disease-related candidate genes. To evaluate this ap-
proach, we selected four seed genes, each with a proven role in
Alzheimer’s disease (AD). The method performed well in predicting
additional network nodes that match AD gene candidates identi-
fied manually by an expert. We also show that the method
prioritizes among the seed nodes themselves, rejecting false-
positive seeds that are derived from (noisy) whole-genome genet-
ic-linkage scans. We propose that this strategy will provide a
valuable means to bridge genetic and genomic knowledge in the
search for genetic determinants of multifactorial disorders.

Canonical triangulation is the process of determining the
absolute position of an object in Cartesian space, based on

relative signals from reference points whose absolute position is
known (1). We have attempted to extend this principle to help
us predict unknown genetic determinants (i.e., gene variants) for
common heritable disorders when prior information implicates
several, or many, possible candidates. The idea is to chart the
universe of all known molecular interactions and then to estab-
lish species-specific molecular networks. These networks can
then be used to predict the subnetwork related to the disease of
interest from its nodes’ proximity to known, or implicated,
disease genes, the latter being seed nodes. To demonstrate and
evaluate the approach, we have targeted the study of a common
neurodegenerative disorder, Alzheimer’s disease (AD). Genetic
variants of apolipoprotein E (APOE) gene are known to account
for a substantial fraction of overall genetic susceptibility to AD.
Three additional genes [amyloid precursor protein (APP), pre-
senilin 1 (PSEN1), and presenilin 2 (PSEN2)] have been shown
to harbor unambiguous disease-causing mutations in families
manifesting rare autosomal dominant forms of AD. Moreover,
all four genes may converge in a common physiological role: in
the maintenance, storage, or removal of the aberrant form of
APP from disease-related amyloid plaques. Because the com-
bined effect of mutations in these four genes accounts for less
than one-half of overall genetic susceptibility to AD, and because
linkage studies of whole human genome suggest that several
additional chromosomal loci harbor disease-related gene vari-

ants, we have sought to identify new AD candidate genes by
combining the predictions of molecular-interaction data with
those of whole-genome genetic-linkage studies.

To address this issue, we considered the following problem.
Imagine a large molecular network in which a subset of nodes,
as is pointed to by a prior evidence, is relevant to the disorder
of interest. In addition, we know that our data are noisy; that
is, some or all implicated genes are implicated mistakenly. Our
task is to identify the correctly implicated genes and to predict
additional genes that are likely to harbor genetic variation that
either predisposes individuals to, or protects them against, the
onset of disease.

We propose a solution to this problem using a method that we
refer to as molecular triangulation. In this method, we use available
data from multiple sources, such as genetic-linkage, genetic-
association, or gene-expression data, to identify candidate genes
implicated in the etiology of a given heritable disorder. We also
identify other molecular entities (such as small molecules) cited in
the literature that demonstrate physical or chemical interactions
with the seed nodes or with one another. We then search the
resulting molecular networks for subnetworks that may harbor
disease-relevant genes by identifying genes that are graph-
theoretically close to multiple seed nodes (Fig. 1). (In graph theory,
one can define a distance between a pair of nodes in a graph by the
minimum number of edges that we must traverse to get from one
node to another. We treat a molecular network as a graph in which
genes or other molecules are nodes, and physical interactions
between molecules are edges.)

The triangulation-like method that we propose is based on
two assumptions. First, we assume that erroneously identified
seed nodes are uniformly distributed within a large network.
Second, we assume that the unknown subnetwork relevant to
the disorder of interest is compact (that is, it is unlikely to
comprise numerous disconnected islands within the large
network) and small with respect to the whole network. Con-
sequently, a subset of seed genes that tends to cluster within
the large network is likely to indicate the relevant subnetwork,
and the additional candidate genes are those network nodes
that are neighbors of the clustered seed nodes.

To apply the molecular-triangulation method to real data,
we need a comprehensive model of molecular networks that
represents the current knowledge of the international research
community. Most of that knowledge is locked in an astronom-
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ically large number of research publications. Several recent
text-mining approaches have been suggested to harvest infor-
mation from the literature automatically (2).h,i We have
developed a computer system called GENEWAYS (3) that
automatically extracts molecular-interaction information from
the research literature. Using GENEWAYS to analyze a large
number of full-text articles, we reconstructed species-specific
molecular networks. The accuracy and completeness of our
knowledge related to molecular networks are clearly impor-
tant. If our network-based method for selection of candidate
genes is to work well, we must have extensive knowledge of
molecular networks.

We sought to test the molecular-triangulation approach with a
few types of imperfect (noisy) data implicating several genes in the
etiology of AD. First, we seeded the algorithm with a list of 60 AD
candidate genes prepared manually by an expert in the field
(C.A.K.). We studied the resulting triangulation ranks for low- and
high-scoring seed genes, effectively prioritizing among the 60
expert-validated AD genes. Second, we seeded the algorithm with
the four known AD genes (APP, APOE, PSEN1, and PSEN2) and
then compared the triangulation-predicted candidate genes with
the list of expert-validated AD genes. We determined the signifi-
cance of these automated predictions by comparing them to mul-
tiple predictions generated from randomly selected seed sets of any
four genes. Further, we tested the robustness of the method by
adding noise (randomly selected genes) to the set of four AD genes
and then measuring the decrease in the fraction of predicted
candidate genes that matched the expert list. Third, we applied the
method to data from a recent comprehensive whole-genome link-
age scan of AD families (4). The latter study identified a number of
linkage peaks between contiguous DNA markers and AD-affection
status, thereby implicating numerous AD positional candidate

genes. In our analysis, we first mapped these genes to nodes in our
literature-derived molecular-interaction network and then assigned
priorities to the positional candidate genes by our algorithm.

Methods
Text Mining to Capture Knowledge of Molecular Interactions. We
used GENEWAYS to parse �124,000 articles in 25 scientific journals
and thus compiled a comprehensive cross-species database that
comprised �1,500,000 unique interactions among molecular enti-
ties. The entities (nodes in a molecular network) are proteins, genes,
messenger RNAs, small molecules, and other biological substances
that participate in molecular processes. We mapped entity names
stored in the GENEWAYS Ver. 4.0 database to unique SwissProt (5)
identifiers of human proteins,j excluding interactions that could not
be linked to protein (or corresponding gene) sequences. Of the
remaining interactions, we considered only those that describe
direct relationships among molecular entities (such as bind and
phosphorylate). (The indirect interactions, such as activate, inhibit,
and regulate, can be implemented as a chain of numerous direct
interactions and therefore can be misleading for identifying net-
work neighbors.) The resulting direct-links-only human network
contained 17,211 interactions among 3,111 network nodes corre-
sponding to unique SwissProt identifiers.

AD Candidate Genes Identified from Genetic-Linkage Information.
One useful source for prediction of AD candidate genes is whole-
genome genetic-linkage data. Such studies identify chromosomal
regions likely to harbor disease-related genetic variation, but the
typically marginal statistical significance that correlates any single
locus with disease status is reflected by low broad linkage peaks,
each of which may encompass tens to 100 or more candidate genes,
all with equal candidate stature. Thus, the vast majority of posi-
tional candidate genes are expected to be unrelated to AD.

We used the whole-genome-scan data from Blacker et al. (4),
because theirs is one of the largest and most recent studies, and also
because their findings are generally consistent with those reported
by other independent groups. We arbitrarily selected the 10 linkage
peaks that had multipoint local scores (MLSs) �1.5, and we
combined the data for three AD subtypes (late, early�mixed, and
total) into a single common phenotype, considering only the highest
peak per region. The search for candidate genes was further limited
to the region under the linkage peak that we defined by dropping
1 logarithm of odds (lod) unit interval from the linkage peak (Fig.
2). We used genetic maps and intermarker distances provided by
the Center for Inherited Disease Research (CIDR). We down-
loaded the CIDR marker set and corresponding gender-averaged
distances from the CIDR web site (www.cidr.jhmi.edu�download�
CIDRmarkers.txt). We used resources from the National Center
for Biotechnological Information map-viewer resource (ftp:��
ftp.ncbi.nih.gov�genomes�H�sapiens) to calculate the coordinates
between the CIDR marker positions (in centimorgans) and the
absolute genomic positions (in base pairs). This step was necessary
for locating positional candidate genes whose absolute genomic
position is known. By this process, we identified 1,476 gene loci. To
map the corresponding genes to our human interaction network, we
annotated the loci with their respective SwissProt identifiers. This
mapping turned out to be possible for only 657 of the 1,476 loci, 157
(23.9%) of which we were then able to map to nodes of our
interaction network. We then prioritized the candidate genes with
the molecular-triangulation methodology using MLS scores corre-
sponding to the highest points of the respective linkage peaks.

hCollier, N., Park, H. S., Ogata, N., Tateisi, Y., Nobota, C., Ohta, T., Sekimizu, T., Imai, H.,
Ibushi, K. & Tsujii, J. (1999) in EACL’99 (Bergen, Norway).

iPustejovsky, J., Castano, J., Sauri, R., Rumshisky, A., Zhang, J. & Luo, W. (2002) in ACL-02
(Philadelphia, PA).

jThe mapping step involved the resolution of spelling variants (p53 protein, p53-protein,
and p53 proteins) as well as synonymy (amyloid � A4 protein, APP, A4, and AD1 are
synonyms that denote the same entity). Interactions with ambiguous names (those that
mapped to more than one SwissProt ID) were excluded.

Fig. 1. The molecular-triangulation method. The analysis starts with a
possibly noisy set of seed genes that have been identified as bearing infor-
mation about the molecular subsystem that malfunctions in the disorder of
interest. If the seed genes, shown as red nodes in the plot, are randomly
distributed through a large molecular pathway (A), they tend to be far from
one another. Therefore, few pathway nodes (shown in blue) lie in the imme-
diate neighborhood of more than one seed node. On the other hand, if the
seed genes cluster in a compact molecular neighborhood, thus indicating the
faulty subsystem (B), they tend to have overlapping neighborhoods; those
gene nodes that are in the immediate network neighborhood of more than
one seed node constitute candidates for future mutation analysis in affected
and healthy humans.
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AD Expert Data. Our AD expert provided a manually curated list of
high-probability AD candidate genes. The list consisted of 85
candidates, with their chromosomal location and predicted rela-
tionship to AD. We were able to map 60 of these genes (70.6%) to
nodes of our molecular-interaction network. This list of the 60 genes
included the four AD seed genes selected for this study: APP,
APOE, PSEN1, and PSEN2. (The full list is shown in Table 4, which
is published as supporting information on the PNAS web site.)

Prioritization of Gene Candidates with Molecular Triangulation. In
applying the molecular-triangulation technique, we assume the
presence of a large molecular network that encompasses multiple
genes that harbor disease-related genetic variation and that is
available in a computer-accessible form. Furthermore, we assume
that we have prior evidence implicating a subset of disease-specific
seed nodes in the network. We start by assigning a primary-
evidence value to every seed node (for example, the MLS scores
corresponding to the linkage peak associated with a set of positional
candidate genes or an equal value to each of the four known AD
genes); a higher primary-evidence value indicates a higher proba-
bility of being implicated in the disorder. For each network node
(including the seed nodes), we next compute a secondary-evidence
value, which combines a given node’s multiple primary-evidence
values into a single number. Using the analogy of an electric
potential, we let each seed node project its evidence value to its
immediate neighbor nodes, such that the secondary-evidence value
decays with the distance from the seed node. More precisely, we
compute the secondary-evidence value in the following way:

E�u� � �
v�B

Ep�v�f�duv�,

where E(u) is the secondary evidence for node u, Ep(v) is the
primary evidence for seed node v, B is the set of all seed nodes,
duv is the distance between nodes u and v,k and finally, f is a
distance-dependent decay function. The function penalizes a
large distance between nodes u and v, lowering the secondary
evidence for node u. We determined that different shapes of the
decay function (sigmoid, linear) lead to comparable results for
the secondary evidence (data not shown). It is therefore suffi-
cient to use the parameterless decay function

f�duv� � 1��duv � 1�.

To understand the method, we can think of the seed nodes as
emanating their primary evidence to their neighbor nodes, such
that near neighbors are assigned a secondary-evidence value
higher than that conferred on distant neighbors, the neighbor-
liness being defined in graph-theoretic terms. Further, the
secondary-evidence values generated by all seed nodes are
summed for each network node, so the nodes that are close to
more than one seed node receive secondary-evidence values
higher than those of nodes that are close to only one seed node.

The next important question is: How do we distinguish a signif-
icant from an insignificant secondary-evidence value? Significance
in this case is defined by the probability that a null model would
generate the observed evidence values; if the observed secondary-
evidence value of a node can be generated under a null model with
probability �, the test has a P value of �. Our null model in this case
corresponds to the assumption that we have selected the seed genes
at random, using a uniform distribution over all network nodes.

We compute two types of P values that evaluate the raw and
topology-subtracted significance of a secondary-evidence value.
The two P values that we compute for each network node reflect
two aspects of the hypothesis that the node is involved in a
disease-related subnetwork.

A raw P value is the probability that any node in the network will
attain or exceed its observed secondary-evidence value under the
null model. (The null model corresponds to process of random
selection of the seed nodes that have the same primary evidence as
observed in the real seed nodes.) A network node with a significant
(very small) raw P value can be seen as topologically close to the
seed nodes, so that the secondary evidence value for this node is
significantly higher than those achieved by any network node from
a random equal-size set of seed nodes. A raw P value is topology-
dependent: Some network nodes, as a result of their high connect-
edness in the network, may attain a significant raw P value under
most or all random assignments of the seed nodes.

The topology-subtracted P value corresponds to the probability
that a given node will obtain its observed secondary-evidence value
by chance in a large number of random assignments of the seed
nodes. (In other words, instead of pooling together secondary-
evidence scores for different nodes in random seed-node assign-
ments, as we do to compute raw P values, we compute the
secondary-evidence value distribution for each node individually.)
A network node receives a significant (small) topology-subtracted
P value when there is a (compact) clustering of seed nodes around
the network node in a way that is nonrandom. The calculation of
topology-subtracted P values takes account of the connectedness of
a network node: Highly connected nodes, which systematically
achieve significant raw P values in random seed-node assignments,
achieve significant topology-subtracted P values only in case of a
true (compact) clustering of the seed nodes.

We therefore interpret the two P values as follows: The topology-
subtracted P value indicates whether a network node participates in
a specific disease-related subnetwork defined by the seed nodes,
and the raw P value indicates whether the network node is central
(topologically close) to this subnetwork.

In general, low values of both kinds of P values identify nodes that
are good candidates for association with the disease process.
Candidates with significant raw P value but insignificant topology-
subtracted P value are most probably highly connected nodes that
are central (significant raw P value) to multiple (insignificant
topology-subtracted P value) subnetworks, and their malfunction is
unlikely to be specific to a particular disorder.

Results and Discussion
We started our application of the molecular-triangulation algo-
rithm by seeding with (i) the 60 expert-selected AD genes, (ii) the
4 AD-susceptibility genes (APOE, APP, PSEN1, and PSEN2), and

kThe distance between nodes u and v is calculated by using Dijkstra’s shortest-path
algorithm.

Fig. 2. Determination of the 1-lod unit interval. We imported the published
MLS AD linkage information from Blacker et al.’s (4) study into a graphical
package (Microsoft VISIO) so that we could draw the boundaries of the 1-lod
interval accurately. In this example, we subtracted one MLS from the 70-cM
peak of chromosome 19 to determine a 1-lod interval between 63 and 73 cM.
[Linkage peak reproduced with permission ref. 4 (Copyright 2003, Oxford
University Press).]
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(iii) 157 genes from the whole-genome linkage study. For the first
and second seed sets, we assigned a uniform primary-evidence
value of 1.0 to each seed node. For the third set, we assigned a
primary-evidence value that corresponded to the MLS of the
linkage peaks of the whole-genome AD study. The resulting
secondary-evidence values, ranked according to their raw P values,
and the corresponding raw and topology-subtracted P values are
shown in Tables 1–3.

Table 1 shows the 50 top-scoring network nodes after seeding
with set 1. The results are remarkable in two respects. First, the
ranking of the expert nodes, which acted as seeds with equal
primary evidence, may provide a means to assign priorities to genes
within the seed set. For example, seed genes ESR1 and APP turned
out to be the two highest-ranking expert genes at ranks 3 and 4,
respectively, whereas seed genes CHRM1 and PRNP received the
low ranks, 2,575 and 2,647, respectively. High-ranked genes (with
both P values low) tend to cluster, whereas low-ranked expert genes
tend to be outliers, strangers to the main cluster. Second, Table 1
shows many new genes (that is, genes that were not suggested by the
expert) among the 100 top-scoring nodes. These genes receive high
secondary-evidence values because of their network proximity to
the seed nodes. The results indicate that these genes may be better
AD candidates than low-scoring expert nodes. Table 1 also dem-
onstrates the utility of using two complementary P values. For
example, some nodes have a significant raw, but a nonsignificant
topology-subtracted, P value. This coupling indicates nodes that are
probably nonspecific to AD and that may contribute to multiple
subnetworks regardless of disease relation. For example, node SP1,
a transcription factor, achieves a triangulation rank of 8. According
to the raw importance ranking, SP1 is central to the disease-specific
subnetwork [SP1 has been described recently as playing an essential
role in the processing of APP (6)]. However, the nonsignificant P
value for topology-subtracted importance hints that SP1 affects
multiple gene neighborhoods, thereby casting a degree of uncer-
tainty on what specific role this transcription factor might play in the
etiology of AD. By comparison, both the APP and the PSEN1 genes

(ranks 4 and 14) have highly significant raw and topology-
subtracted P values.

We then seeded the method with four AD-susceptibility genes
and calculated secondary-evidence values for all other nodes of the
network (Table 5, which is published as supporting information on
the PNAS web site, shows the top 50 high-scoring network nodes.)
We used the resulting ranking of network nodes to measure the
sensitivity and specificity of the triangulation method in predicting
expert-validated AD genes (56 genes, excluding the 4 seed genes)
among the top-scoring network nodes. We evaluated the molecular-
triangulation method using the same method as that commonly
used for classification algorithms: We treated all expert-defined
genes as true positives and all other nodes as true negatives. We
measured the predictive strength of the method with the receiver
operating characteristic (ROC) score, a value commonly used in
computer-science research for evaluating classification algorithms.
(An ROC score of 1 corresponds to a perfect method; an ROC
score of 0.5 indicates a powerless classification method.) We found
that seeding the method with the four AD-susceptibility genes
resulted in significantly higher secondary-evidence values being
assigned to unseeded expert-selected genes, compared with values
assigned when we seeded the method with randomly chosen genes.
Compared to the mean ROC score of 0.6257 for a random
seed-node assignment,l our selected seed nodes provided a signif-
icantly higher ROC score of 0.6806 (P � 0.01).

We also wished to test whether our method is robust against
noise in the linkage data. We repeated the experiment described
in the preceding paragraph, this time adding an increasing
number of random genes to the set of four known AD suscep-
tibility genes. As Fig. 3 (upper intervals) shows, the results are

lThe results of the random assignment are better than those of chance (which would
correspond to an area under the ROC curve of 0.5), because the ranks of the specific nodes
are stable regardless of the assignment of primary evidence. Such nodes are usually highly
connected and thus affect multiple network neighborhoods. In our case, a portion of the
expert nodes seem to fall into this category and are thus predictable even with random
assignments of primary evidence.

Table 1. Ranking of the top 50 network nodes after seeding with 60 expert AD genes

Rank* Sec. ev. P valuer SP ID Symbol P valuets Rank Sec. ev. P valuer SP ID Symbol P valuets

1 19.92 0.0000 P12931 SRC 0.0006 26 18.12 0.0010 P98160 HSPG2 0.0026
2 19.87 0.0000 P20132 SDS 0.0020 27 18.10 0.0011 P02649 APOE 0.0000
3 19.82 0.0000 P03372 ESR1 0.0029 28 18.07 0.0011 P24941 CDK2 0.0026
4 19.72 0.0000 P05067 APP 0.0000 29 18.07 0.0011 P06241 FYN 0.0051
5 19.40 0.0000 P29323 EPHB2 0.0017 30 18.07 0.0012 P01375 TNF 0.1146
6 19.15 0.0001 Q9UMH0 TAU 0.0000 31 18.03 0.0012 P02593 CALM3 0.0269
7 18.87 0.0002 P04637 TP53 0.0486 32 18.03 0.0012 P00750 PLAT 0.0154
8 18.87 0.0002 P08047 SP1 0.0866 33 18.02 0.0013 P01266 TG 0.0000
9 18.65 0.0003 P01106 MYC 0.0743 34 17.98 0.0014 P06493 CDC2 0.0009

10 18.65 0.0003 Q09472 EP300 0.0023 35 17.95 0.0015 P16220 CREB1 0.0614
11 18.58 0.0004 P35568 IRS1 0.0000 36 17.93 0.0015 P12830 CDH1 0.0009
12 18.57 0.0004 P14210 HGF 0.0000 37 17.93 0.0015 P04629 NTRK1 0.0000
13 18.57 0.0004 P11498 PC 0.0011 38 17.87 0.0017 P00519 ABL1 0.0011
14 18.52 0.0004 P49768 PSEN1 0.0000 39 17.87 0.0017 P50391 PPYR1 0.0037
15 18.50 0.0004 P28482 MAPK1 0.0137 40 17.85 0.0018 Q13201 ECM 0.0009
16 18.48 0.0005 Q92793 CREBBP 0.0157 41 17.85 0.0018 P08100 RHO 0.0566
17 18.33 0.0007 P21912 SDHB 0.0243 42 17.82 0.0018 P02248 UBB 0.0849
18 18.33 0.0007 Q14155 P85 0.0280 43 17.82 0.0019 P20226 TBP 0.0549
19 18.32 0.0007 P40763 STAT3 0.0063 44 17.77 0.0021 P17080 RAN 0.0066
20 18.28 0.0007 P29353 SHC1 0.0086 45 17.72 0.0023 P01130 LDLR 0.0000
21 18.27 0.0008 P27361 MAPK3 0.0109 46 17.70 0.0023 O60674 JAK2 0.0066
22 18.23 0.0008 Q06124 PTPN11 0.0040 47 17.70 0.0023 P35610 SOAT1 0.0143
23 18.18 0.0009 P26599 PTBP1 0.0000 48 17.70 0.0023 P04049 RAF1 0.0511
24 18.17 0.0009 P01133 EGF 0.0794 49 17.70 0.0023 P06400 RB1 0.0831
25 18.15 0.0010 P43320 CRYBB2 0.0334 50 17.70 0.0023 P38936 CDKN1A 0.0983

Bold, nodes with primary evidence; italics, AD expert genes; P valuer, raw P value; P valuets, topology-subtracted P value; SP ID, SwissProt identifier; Sec. ev.,
secondary evidence value.
*Sorted by raw P values.
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stable (and remain significant) for the addition of up to three
random genes.

We also conducted an experiment using 157 positional candidate
genes from the whole-genome linkage study. After seeding our
method with those candidates, we found among the top ranked
genes mostly insignificant topology-subtracted P values. The 157
positional candidates do not belong to a well-defined network
cluster, indicating a high noise level; Table 2 shows the 50 top-
scoring nodes. We can use an elegant solution to weed out noisy
data from these results. By selecting genes with significant raw and

topology-subtracted P values (cutoff 0.05), we can identify genes
that are central and specific to a network cluster. Only 58 genes (of
3,111 genes�nodes in our network) comply with this requirement
(Table 3). This set contains a total of 11 seed genes from the
whole-genome scan analysis; the remaining 147 seed genes are
rejected (selecting 11 genes of 157 corresponds to a 93% reduction
in candidates genes). In other words, despite the presence of linkage
noise, the algorithm identified a total of 11 seed genes that are
clustered in a way that is not random, a majority of those 11 genes
have a demonstrated relationship to AD. Three of them are expert
validated [APOE, mitogen-activated protein 8 (MAPK8), and uroki-
nase plasminogen activator (PLAU)]. Apolipoprotein(a)’s (LPA)
null phenotype has been shown recently to delay the age of onset
of AD (7). Urokinase plasminogen activator receptor (PLAUR)
has a clear functional relationship to (is the receptor of) PLAU.
Calmodulin (CALM3) is central to the Ca2��calmodulin-
dependent protein kinase II (CaMKII), which has been implicated
as being involved in the phosphorylation of tau protein (8). Given
the ubiquitous nature of calmodulin, it is not surprising that the
topology-subtracted P value associated with the protein is of
borderline significance. Of the candidates mentioned, CALM3 and
PLAUR are located close to the 19q13 (7.7 MLS) peak correspond-
ing to the AD-susceptibility gene APOE. However, the candidate
statures of CALM and PLAUR are not enhanced by their colocation
with a major linkage peak, because it is clear that the linkage signal
derives from the contribution of APOE. Both MAPK8 and PLAU
map to the 10q22 (1.8 MLS) peak, whereas LPA maps to the 6q27
(2.2 MLS) peak. Among the remaining 47 genes that have no
corresponding linkage peaks in Table 5, there are six additional
expert-validated genes (IL6, NOS3, LPL, GRIN1, NTRK1, and
HMOX1). In addition, many of the remaining genes have clearly
established links to AD. Examples are the top-ranked genes CREB1
and PLAT (9, 10).

These results provide a strong argument for the usefulness of
molecular triangulation in situations in which multiple data types
are available for the same disorder, such as linkage information that

Fig. 3. Area under the ROC curve for predicting 56 expert genes. The upper
intervals indicate results (mean area under the ROC curve with 95% confi-
dence interval) of seeding the method with four known AD-susceptibility
genes plus additional, believed to be irrelevant genes. The lower intervals
indicate the results of seeding the method with an equivalent number of
random genes.

Table 2. Ranking of the top 50 network nodes after seeding with 157 genes from whole genome AD linkage scan

Rank* Sec. ev. P valuer SP ID Symbol P valuets MLS Rank Sec. ev. P valuer SP ID Symbol P valuets MLS

1 179.29 0.0002 P08047 SP1 0.1066 26 168.52 0.0031 P38936 CDKN1A 0.1343
2 179.24 0.0002 P03372 ESR1 0.1511 27 167.73 0.0036 Q09472 EP300 0.1786
3 178.27 0.0003 P12931 SRC 0.1340 28 167.53 0.0037 P42224 STAT1 0.1631
4 178.22 0.0003 P20132 SDS 0.1680 29 167.45 0.0038 P31749 AKT1 0.0671
5 176.20 0.0005 P29323 EPHB2 0.0706 30 167.31 0.0039 Q05397 PTK2 0.0554
6 174.31 0.0009 P01106 MYC 0.2409 31 166.92 0.0041 Q13510 ASAH1 0.0091
7 173.20 0.0012 P16220 CREB1 0.0237 32 166.91 0.0042 P29354 GRB2 0.0957
8 172.72 0.0013 P04637 TP53 0.4100 33 166.45 0.0045 P35568 IRS1 0.0743
9 172.31 0.0014 P43320 CRYBB2 0.0463 34 165.73 0.0051 P04049 RAF1 0.1737

10 172.20 0.0015 P00750 PLAT 0.0086 35 165.59 0.0052 P14222 PRF1 0.1111 1.8
11 171.98 0.0015 Q92793 CREBBP 0.0871 36 165.43 0.0054 P02248 UBB 0.3763
12 171.90 0.0016 P28482 MAPK1 0.0929 37 164.56 0.0062 P98160 HSPG2 0.1000
13 171.70 0.0016 P21912 SDHB 0.0746 38 164.42 0.0063 O00688 EGFR 0.3160
14 171.21 0.0018 P02593 CALM3 0.0397 7.7 39 164.21 0.0065 Q06124 PTPN11 0.1871
15 171.21 0.0018 P20226 TBP 0.0306 2.2 40 164.10 0.0067 P06400 RB1 0.3969
16 171.04 0.0019 Q14155 P85 0.1043 41 163.48 0.0074 P15498 VAV1 0.0437
17 170.79 0.0020 P08100 RHO 0.0523 42 162.77 0.0082 P05231 IL6 0.0466
18 170.31 0.0022 P01133 EGF 0.2280 43 162.68 0.0083 Q07869 PPARA 0.2077
19 169.74 0.0024 P17080 RAN 0.0020 44 162.64 0.0084 P42858 HD 0.0837
20 169.33 0.0026 P01375 TNF 0.3089 45 162.63 0.0084 P06744 GPI 0.0051
21 169.07 0.0028 P40763 STAT3 0.0766 46 162.48 0.0086 P06241 FYN 0.2217
22 169.04 0.0028 P29353 SHC1 0.0643 47 162.41 0.0087 Q92940 MADH3 0.0971
23 169.03 0.0028 P11498 PC 0.0243 48 162.23 0.0089 P05549 TFAP2A 0.1754
24 169.02 0.0028 P27361 MAPK3 0.0800 49 161.92 0.0093 O60674 JAK2 0.1151
25 168.62 0.0030 P12004 PCNA 0.2600 50 161.88 0.0094 P06401 PGR 0.0711

Bold, nodes with primary evidence; italics, AD expert genes; P valuer, raw P value; P valuets, topology-subtracted P value; SP ID, Swiss Prot identifier; Sec. ev.,
secondary evidence value.
*Sorted by raw P values.
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can be combined with knowledge about molecular interactions.m
Nevertheless, the results require further explanation. First, the
expert’s list of AD candidates cannot be regarded as a real gold
standard, given that we still do not know which are the true AD
disease genes. The results of the ROC score calculations might
therefore be lower than expected. Another factor that may influ-
ence the performance of the algorithm is the quality of the
underlying molecular network model. Here, we used a network that
we compiled by mining the molecular literature (in principle, our
method works with any type of molecular interaction network). We
are aware that this network is far from being complete and
error-free, given the many obstacles to harvesting information from
the literature successfully (11). Possible errors include falsely iden-
tified or missed network edges resulting from automated parsing of
complex sentences. Also, problems with automatically identifying
molecular terms may result in the mapping of network connections

to wrong nodes in the network. As a result, the triangulation
algorithm may implicate or miss some candidate genes because of
incorrect network edges. Another problem is that literature is
biased toward positive research results or research results that deal
with already known and popular topics, which may lead to over- or
underrepresentation of certain network connections. Nevertheless,
researchers are making fast progress in solving outstanding text-
mining problems (see, for example, ref. 12), and their work may lead
to the automated construction of high-quality data sets from
literature sources.

Although there are several recent studies that used molecular
network-related information for biological inference [for example,
for predicting protein complexes (13, 14)], we are not aware of any
prior work on combining genetic with molecular-pathway informa-
tion to identify disease-related gene variants.

This study was supported by grants from the National Institutes of
Health, the National Science Foundation, the Department of Energy,
and the Defense Advanced Research Projects Agency (to A.R.). C.A.K.
is the recipient of a National Alliance for Research on Schizophrenia and
Depression Distinguished Investigator Award.

1. Hightower, J. & Boriello, G. (2001) IEEE Comput. 34, 57–66.
2. Ng, S. K. & Wong, M. (1999) Genome Inform. Ser. Workshop Genome Inform.

10, 104–112.
3. Rzhetsky, A., Iossifov, I., Koike, T., Krauthammer, M., Kra, P., Morris, M., Yu, H.,

Duboue, P. A., Weng, W., Wilbur, W. J., et al. (2004) J. Biomed. Inform. 37, 43–53.
4. Blacker, D., Bertram, L., Saunders, A. J., Moscarillo, T. J., Albert, M. S.,

Wiener, H., Perry, R. T., Collins, J. S., Harrell, L. E., Go, R. C., et al. (2003)
Hum. Mol. Genet. 12, 23–32.

5. Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M. C., Estreicher, A., Gasteiger,
E., Martin, M. J., Michoud, K., O’Donovan, C., Phan, I., et al. (2003) Nucleic Acids
Res. 31, 365–370.

6. Christensen, M. A., Zhou, W., Qing, H., Lehman, A., Philipsen, S. & Song, W.
(2004) Mol. Cell. Biol. 24, 865–874.

7. Emanuele, E., Peros, E., Tomaino, C., Feudatari, E., Bernardi, L., Binetti, G.,
Maletta, R., D’Angelo, A., Montagna, L., Bruni, A. C., et al. (2004) Neurosci.
Lett. 357, 45–48.

8. Yoshimura, Y., Ichinose, T. & Yamauchi, T. (2003) Neurosci. Lett. 353,
185–188.

9. Melchor, J. P., Pawlak, R. & Strickland, S. (2003) J. Neurosci. 23, 8867–
8871.

10. Vitolo, O. V., Sant’Angelo, A., Costanzo, V., Battaglia, F., Arancio, O. &
Shelanski, M. (2002) Proc. Natl. Acad. Sci. USA 99, 13217–13221.

11. Blaschke, C. & Valencia, A. (2002) IEEE Intell. Sys. 17, 73–76.
12. Krauthammer, M. & Nenadic, G. (2004) J. Biomed. Inform., in press.
13. Bader, G. D. & Hogue, C. W. (2003) BMC Bioinformatics 4, 2.
14. Bader, J. S. (2003) Bioinformatics 19, 1869–1874.

mHere we used data from a whole-genome linkage scan; the method is equally useful for
similar noisy data from association studies or functional analysis.

Table 3. Fifty-eight network nodes with significant raw and topology-substracted P values (<0.05) after seeding with 157 genes from
whole-genome AD linkage scan

Rank* Sec. ev. P valuer SP ID Symbol P valuets MLS Rank Sec. ev. P valuer SP ID Symbol P valuets MLS

7 173.20 0.0012 P16220 CREB1 0.0237 124 155.81 0.0217 P45983 MAPK8 0.0109 1.8
9 172.31 0.0014 P43320 CRYBB2 0.0463 131 155.41 0.0229 P19174 PLCG1 0.0226

10 172.20 0.0015 P00750 PLAT 0.0086 136 154.74 0.0251 Q03405 PLAUR 0.0031 7.70
14 171.21 0.0018 P02593 CALM3 0.0397 7.7 137 154.73 0.0251 P08519 LPA 0.0291 2.20
15 171.21 0.0018 P20226 TBP 0.0306 2.2 143 154.29 0.0266 P06858 LPL 0.0049
19 169.74 0.0024 P17080 RAN 0.0020 147 154.06 0.0274 P10451 SPP1 0.0394
23 169.03 0.0028 P11498 PC 0.0243 151 153.91 0.0280 P45985 MAP2K4 0.0194
31 166.92 0.0041 Q13510 ASAH1 0.0091 154 153.41 0.0299 Q05586 GRIN1 0.0280
41 163.48 0.0074 P15498 VAV1 0.0437 156 153.14 0.0310 P04629 NTRK1 0.0414
42 162.77 0.0082 P05231 IL6 0.0466 162 153.03 0.0315 P26651 ZFP36 0.0091 7.7
45 162.63 0.0084 P06744 GPI 0.0051 166 152.79 0.0325 Q05682 CALD1 0.0046
53 161.26 0.0103 Q9NZ50 SR 0.0349 167 152.70 0.0329 P21359 NF1 0.0294
54 161.22 0.0103 P02649 APOE 0.0026 7.7 171 152.56 0.0335 P06729 CD2 0.0149
62 160.64 0.0112 P32119 PRDX2 0.0377 176 152.44 0.0340 P25098 ADRBK1 0.0406
66 160.35 0.0117 P29474 NOS3 0.0437 182 152.02 0.0359 P35520 CBS 0.0037
70 159.54 0.0131 Q14289 PTK2B 0.0314 184 151.98 0.0362 Q9NT12 ATP8A2 0.0177
75 158.61 0.0149 P01266 TG 0.0329 185 151.96 0.0362 P46734 MAP2K3 0.0049
78 158.56 0.0150 P08133 ANXA6 0.0157 191 151.71 0.0374 P19338 NCL 0.0477
94 157.72 0.0168 P10145 IL8 0.0057 195 151.63 0.0378 P11137 MAP2 0.0106
97 157.52 0.0173 Q00403 GTF2B 0.0497 1.6 199 151.61 0.0379 P08571 CD14 0.0111

100 157.42 0.0175 P11912 CD79A 0.0034 7.7 206 151.32 0.0394 Q9UIT9 MYLK 0.0163
109 156.76 0.0191 P07204 THBD 0.0191 210 151.05 0.0408 P09601 HMOX1 0.0400
110 156.67 0.0193 P16333 NCK1 0.0437 211 151.03 0.0409 P18206 VCL 0.0117 1.8
111 156.63 0.0195 P00749 PLAU 0.0026 1.8 220 150.73 0.0425 P42261 GRIA1 0.0100
112 156.62 0.0195 Q92934 BAD 0.0483 224 150.67 0.0429 P11166 SLC2A1 0.0203
115 156.38 0.0201 P47712 PLA2G4A 0.0214 236 150.36 0.0446 O95644 NFATC1 0.0451
117 156.25 0.0205 Q02750 MAP2K1 0.0449 245 149.93 0.0471 P00374 DHFR 0.0351
118 156.24 0.0205 P55290 CDH13 0.0394 248 149.86 0.0476 P02753 RBP4 0.0280
120 156.02 0.0211 P56945 BCAR1 0.0426 252 149.67 0.0487 P12270 TPR 0.0400

Bold, nodes with primary evidence; italics, AD expert genes; P valuer, raw P value; P valuets, topology-subtracted P value; SP ID, Swiss Prot identifier; Sec. ev.,
secondary evidence value.
*Sorted by raw P values.
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