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ABSTRACT
Knowledge on interactions between molecules in living
cells is indispensable for theoretical analysis and practical
applications in modern genomics and molecular biology.
Building such networks relies on the assumption that
the correct molecular interactions are known or can be
identified by reading a few research articles. However,
this assumption does not necessarly hold, as truth is
rather an emerging property based on many potentially
conflicting facts. This paper explores the processes of
knowledge generation and publishing in the molecular
biology literature using modelling and analysis of real
molecular interaction data. The data analysed in this
article were automatically extracted from 50 000 research
articles in molecular biology using a computer system
called GeneWays containing a natural language pro-
cessing module. The paper indicates that truthfulness of
statements is associated in the minds of scientists with the
relative importance (connectedness) of substances under
study, revealing a potential selection bias in the reporting
of research results. Aiming at understanding the statistical
properties of the life cycle of biological facts reported in
research articles, we formulate a stochastic model de-
scribing generation and propagation of knowledge about
molecular interactions through scientific publications. We
hope that in the future such a model can be useful for
automatically producing consensus views of molecular
interaction data.
Contact: ar345@columbia.edu
Keywords: statistical modelling; scientometric analysis;
molecular interaction data; natural language processing

INTRODUCTION
Molecular interaction data and corresponding knowledge
bases are becoming increasingly important for both aca-

demic and commercial undertakings in modern biology
(Jeong et al., 2001; Karp, 2000; Karp et al., 1998). As
these resources are used more intensively, the updating of
manually curated repositories becomes an important is-
sue. Usually, experts determine which information should
be included in the repositories, and some databases,
such as DIP, invite outside researchers to help curate the
growing amount of data (Xenarios et al., 2002). While
expert consensus is certainly the de facto standard in
determining true molecular interactions, it is becoming
increasingly more difficult to keep up with the avalanche
of information flooding research journals. Furthermore,
there is some concern that biased reporting of research
results in the literature may complicate the process of
truth finding. Mrowka and colleagues (Mrowka et al.,
2001) have recently described significant discrepancies
of two-hybrid protein–protein interaction datasets, which
were either indirectly compiled from single research
publications or directly compiled from genomewide
screens. Their data shows a potential selection bias in the
literature-based dataset, which ‘may have been introduced
by the failure to report interactions which cannot be
understood from previous publications, or by failing to
perform experiments for such pairs in the first case’.
Elucidating such biases, as well as other complicating
factors such as contradicting research results, are the aim
of this paper. Our motivation is the direct application
of such insights to our system called GeneWays, which
automatically collects molecular interaction data from
the research literature using a natural language module
called GENIES (Friedman et al., 2001). Our goal is to
assist experts in building a consensus representation of
the extracted molecular information by automating the
consensus finding process when there are biased and/or
conflicting research results.
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Using scientometric techniques, this paper attempts to
shed light on how molecular interaction data is reported
in the research literature. Unlike traditional scientomet-
ric approaches, which rely on citation data, we attempt
to use individual statements on molecular interactions as
they appear in the research articles. The advantage of this
approach lies in the potential to track the reporting of re-
search results over time, which enables the measurement
of basic publication properties. These include so-called
waiting times of research ideas, which measure the dif-
fusion of a certain research idea from its first conception
(publication) through the research literature. In this partic-
ular context, we are interested in the time spans between
subsequent publications of unique research results, as well
as the time spans between subsequent publications of the
same research results. We find that these waiting times fol-
low an exponential distribution. By recording negations
of research results we are also able to measure the level
of contradiction in research results. Through the analysis
of the connectedness of a substance to neighbouring sub-
stances, we infer the importance of a statement as a func-
tion of the general interest exhibited by the research com-
munity towards a particular molecular substance. This al-
lows for a direct measurement of selection bias that may
be present in the research literature. We finally integrate
these results into a model describing the generation of re-
search ideas in the domain of molecular biology.

BACKGROUND
The immense growth of research literature in the field
of molecular biology calls for methods to automatically
capture and intelligently store molecular data. In recent
years, many groups have worked on dedicated prob-
lems in this area, like machine-selection of articles of
interests (Iliopoulos et al., 2001; Shatkay et al., 2000),
automated extraction of information using statistical
methods (Stephens et al., 2001; Stapley and Benoit, 2000)
or natural language processing techniques (Friedman et
al., 2001; Yakushiji et al., 2001; Thomas et al., 2000; Ng
and Wong, 1999; Sekimizu et al., 1998) as well as setting
up specialized knowledge bases for storing molecular
knowledge (Stevens et al., 2000). We are working on a
system called GeneWays, which combines these subtasks
into an integrated system. The system targets extraction of
binary statements about two interacting substances, such
as proteins, RNAs, genes and small molecules, and the
type of interaction between them, such as phosphorylate,
demethylate, activate or inhibit. The system annotates
each molecular interaction with information such as the
actual journal statement, the name of the corresponding
journal, the date of publication and whether the interaction
is positively (‘A activates B’) or negatively (‘A does not
activate B’) stated. The core of the system is a knowledge
base of molecular actions (Rzhetsky et al., 2000) opti-

mized for storing information from different knowledge
sources. The knowledge is provided by various system
modules, which sequentially select scientific journals
of interest, mark and identify substance names in the
journal text (Hatzivassiloglou et al., 2001; Krauthammer
et al., 2000) and extract interactions between these sub-
stances and other actions by means of natural language
processing (NLP) (Friedman et al., 2001). Finally, the
stored knowledge can be queried, critiqued and visualized
(Koike and Rzhetsky, 2000) by interested researchers. The
system is fully functional and is collecting and processing
articles from online scientific journals. We have evaluated
different systems modules, such as term identification
(sensitivity 78.8%, precision 71.7%), term disambiguation
(85% accuracy) and relationship extraction (sensitivity
63%, precision 96%). The system and evaluations are
described elsewhere in more detail (Friedman et al.,
2001; Hatzivassiloglou et al., 2001; Krauthammer et
al., 2000). We are currently working on adding new
functionalities to the system, such as synonym resolution
and automated learning of new functional relationships
as encountered in the journal articles (Hatzivassiloglou
and Weng, 2002). This paper aims at a further system
enhancement involving the development of a module that
automatically derives consensus opinion from conflicting
statements in articles.

While our work has some similarities with the concept
of epidemic spread in small world networks (Watts, 1999),
it can be best compared to methodologies applied in
the field of citation analysis. These include modelling
of observed citation frequency distributions or measuring
citation diffusion rates. Attempts to model the first-citation
distribution of journal articles (Burrell, 2001; Egghe,
2000), which describes the time delay between publication
and the first citation, use stochastic approaches to fit a
model to the observed citation distribution. Other studies
are concerned with measuring the citation diffusion rate
(Kortelainen, 2001), which can be used to describe
the diffusion of a certain journal in an international
context. Although these approaches can be compared
to our methodology of modelling waiting times, there
is an important qualitative difference between the two
strategies. While citations stand for ‘concept symbols’
(Van der Veer Martens, 2001) representing past ideas or
innovations, they are usually represented in a format that
makes it difficult for a machine to understand the content
of the ‘concept symbol’ (i.e., the nature of the idea or the
innovation) unless the idea is explicitly stated in the title
of the citation.

In contrast, our approach is based on the occurrence
of research results in actual statements of the articles.
For example, from the hypothetical sentence ‘we thereby
conclude that cbl phosphorylates abl’, the system extracts

S250



Of truth and pathways

the crucial knowledge content

[action, phosphorylate, [protein,cbl], [protein,abl]]

in a frame-based knowledge representation format which
is machine readable (for an explanation of the knowledge
representation format see Friedman et al. (2001)). We
are thus able to track actual research results as they are
amplified throughout the research literature. Continuing
the above example, a sentence such as ‘we observed
the phosphorylation of abl through cbl’, which appears
in a journal article issued after the first publication of
this molecular interaction, is crucial in determining the
amplification (diffusion) of the molecular interactions.
Using the same example, a sentence such as ‘interestingly,
cbl did not phosphorylate abl’ would help to establish
a measure of contradiction involved in this molecular
interaction.

The distribution of these properties (amplification and
contradiction) can be attributed to well-described statisti-
cal processes. This allows for a robust statistical descrip-
tion of how molecular interactions are reported in the lit-
erature. From the resulting model, we draw some gen-
eral conclusion about how truth evolves in the domain of
molecular biology. We further show how the model can be
used to infer consensus opinion automatically from con-
tradictory research statements.

METHODS
Our methods can be subdivided into two main parts:
The first part deals with the design of the ‘noisy truth
generator’ model, which describes the evolution of a
research idea from first conception and publication to
amplification in the research literature. The second part
consists of using data from actual research articles to
justify assumptions inherent in the ‘noisy truth generator’
model.

The ‘noisy truth generator’ model
The model (Figure 1) is conceived to answer the following
type of question: Given a set of statements about a
particular molecular interaction, which appear in different
journals articles published over the time period from
first publication to the day of the analysis, what is the
probability that these statements describe a true molecular
interaction? That is, how well do the properties of the set
of statements under study correspond to the normal life
cycle of statements about true molecular interactions?

We start with the assumption that there is an imagi-
nary device (a ‘truth generator’) that produces original
statements about interactions between molecules (such
as genes, proteins, RNA and small molecules). The
generated statements can be either true or false, and they
are not allowed to repeat. The statements that we have in

mind are of the type ‘protein X activates protein Y’ or
‘small molecule Z binds protein X’. Both molecule names
and verbs (which we call ‘actions’) are chosen from finite
but large lists.

The generated unique statements are accumulated in an
imaginary vessel from which they enter various journals.
Here we assume that true and false statements are enter-
ing the same journal at different (unknown) rates. Further-
more, these rates can vary for different journals.

Once a statement enters one of the journals, it is subject
to amplification. We use the term amplification to indicate
the repetition of already published statements in research
articles. From our personal experience with the biological
peer-review process, it appears that it is substantially
easier to publish statements that have already appeared
in publications than completely new ones. This may be
because it is substantially easier for a reviewer to question
the validity of new research results than already published
ones.

Further, the amplified and original statements alike are
subject to automatic extraction with our computer system,
see Friedman et al. (2001). A proportion of statements is
successfully extracted (this proportion is called recall in
the natural-language processing community) and another,
smaller, proportion of statements is lost. Furthermore, out
of the extracted statements, only a proportion is extracted
correctly (this proportion is commonly called precision)
and the remaining, smaller, proportion is extracted with
errors.

The observed data in this model are represented by a
collection of extracted statements with references to cor-
responding sentences, articles to which these statements
belong, and journals and publication dates corresponding
to each article. The observed data also provide informa-
tion about the number of times each statement appears in a
printed form and the number of unique statements. Evalu-
ation of the extracted information by human experts (qual-
ified molecular biologists) can provide judgment (whether
a statement is true or false) for each individual statement.
Given the observed data and the model, we can estimate
the model parameters via the maximization of the likeli-
hood function (Maximum Likelihood Estimation). Then,
given parameter estimates and some knowledge about the
prior distribution of data, we can use the model to assign
to each new unique statement (not used for training the
model) a posterior probability that this statement is true.

Now we provide the analytical description of the model
with mathematical specifics. We start the mathematical
description by determining the probability of true and false
statements entering the i th journal. The probability that
Ni original statements enter the i th journal during time t
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Fig. 1. The ‘noisy truth generator model.’

under the model is given by

P(Ni |t, αi ) = (αi t)Ni e−(αi t)

Ni ! . (1)

Here we assume that the statements arrive according a
Poisson process with rate αi (per unit time, so that the
expected number of events during time t is αi t) specific
to the i th journal. For this assumption to be correct,
the waiting times between arrivals of individual unique
statements should follow an exponential distribution.

Then, we compute the conditional probability that out of
Ni individual statements Ni,T are true and Ni,F are false
in the following way:

P(Ni,T |βi,Ni ) =
(

Ni

Ni,T

)
(1 − βi )

Ni,T βi
(Ni −Ni,T ). (2)

Mathematically this is equivalent to an assumption that
we have two independent Poisson processes, one, for true
statements, with rate [ai (βi − 1)t], and another, for false
statements, with rate [aiβi t].

Next, we assume that the amplification of statements
also follows a Poisson process with rates that are different
for true and false statements and different for distinct jour-
nals. Specifically, given an observation that a statement is
amplified Mi times in the i th journal, the probability of
this event, given it is true, is

P(Mi |T, γi , δi , t) = [γi (1 − δi )t]Mi e−[γi (1−δi )t]

Mi ! . (3)

The probability of observing Mi amplifications given
the statement is false is then given by

P(Mi |F, γi , δi , t) = [γiδi t]Mi e−[γi δi t]

Mi ! . (4)

The reader can see that the parameter γi has meaning
as the average amplification rate per unit time for the
i th journal, while (1-δi ) has meaning as the proportion
contributed to the total amplification for the journal by true
statements.

Finally, turning to the information extraction system,
the probability that the automated system extracts OE
statements from research articles while missing [O − OE ]
statements is given by binomial probability

P(OE |ε, O) =
(

O

OE

)
εOE (1 − ε)O−OE . (5)

Similarly, the probability of extracting correctly OEC
out of OE statements is given by

P(OEC |φ, OE ) =
(

OE

OEC

)
φOEC (1 − φ)OE −OEC . (6)

Now we are equipped to write an expression for the
likelihood of the data for a specified set of parameter
values. Given OE extracted statements, we should assign
them into groups ‘extracted correctly’ (OEC statements)
and ‘extracted incorrectly’ (OE−OEC statements). Within
the group ‘extracted correctly’ we should group statements
into unique (the first chronological statement of each
kind) and amplified statements (chronologically recent
statements of the same kind) and compute for each unique
statement and each (i th) journal Mi , the number of times
the statements were amplified in the i th journal. Then,
we compute the number of unique statements per journal,
Ni . Each unique statement has to be assigned either
into the class of true statements or false statements (this
assignment does not need to be optimum at the first pass).
The resulting likelihood is a product of the individual
probabilities defined above.

The goal of this exercise is to assign extracted state-
ments into the groups ‘erroneously’ and ‘correctly
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extracted,’ and for correctly extracted unique statements
into the groups ‘false’ and ‘true’ that maximizes the
posterior probability (given known parameter values)

P(|D, �) = P(D|, �)P()∑


P(D|, �)P()
, (7)

where  is the assignment of statements into groups of
false and true, � is a set of parameters values, and D is
the observed data.

Analysis of the research literature
We can assess whether the key assumptions in the
Noisy Truth Generator model are reasonable by analysing
the real pathway statements extracted from the research
literature. In particular, in the model we assume that
both unique and amplified statements arrive according
to Poisson processes. By observing how often unique
and amplified statements about molecular interactions
enter the research journals we can examine the properties
of the underlying stochastic process. In particular, the
waiting times between consecutive arrivals of statements
should follow an exponential distribution in order for the
stochastic process to be Poisson.

We conducted our analysis on articles from seven peer-
reviewed journals that either focus on molecular biology
or cover a broad enough topic range to include articles
on molecular biology. This set of journals resulted in a
pool of over 50 000 full-text research articles covering
a publication span from 1995 to 2001. As a first step,
the GeneWays system described above processed the
articles, which resulted in a dataset of over 700 000 total
instances of statements about molecular interactions †. The
sequential processing time for each article by subsequent
system modules is approximately 2 minutes. The total
set of articles was thus processed in 70 CPU days. We
analysed the distributions of the following statistics:

• Waiting times between amplified statements: Defined
as the time span between the two closest in time
statements describing the same molecular interaction.

• Waiting times between unique statements: Defined
as the time span between two subsequent unique
statements. For the purpose of this study, a unique
statement equals the first time description of a molec-
ular interaction between two specific substances

† To reduce noise introduced in the GeneWays preprocessing step (term
identification), we performed the data analysis on a smaller set than the
initial 700 000 statements. We observed that interactions containing wrongly
identified terms have a low amplification rate. We therefore limited the
pool of statements by considering only statements which are repeated at
least 4 times and in at least 2 journals. The final set thus consisted of
approximately 100 000 statements corresponding to roughly 6500 molecular
interactions. The difference between those two numbers is explained by
repeated statements about the same molecular interaction.

among all journals under analysis. Because the articles
represented in the data set span a limited time period, a
definite determination of the uniqueness of a statement
is probably not possible. We therefore limited this
part of the study to the time period of 1997–2001,
and assumed that any statement during this period is
unique unless it has been already mentioned in the
time period of 1995–1996.

The waiting time for a new statement or for an ampli-
fication of that statement may be associated with the im-
portance of the statement to the research community. One
measure of importance is the connectedness of the sub-
stances involved in the statement, where connectedness is
defined as the number of immediate molecular neighbours
of a particular substance. A statement about a substance
with many interactions may be more important to the com-
munity, and may undergo more frequent publication. We
studied this hypothesis as follows:

• The connectedness of a molecular substance: Using
our set of statements about molecular interactions, we
calculated the connectedness of substances directly.
We set a minimum threshold of ten instances men-
tioning a particular molecular interaction in order to
count this interaction towards the connectedness of
the substances involved.

• The average amplification of substances of the same
connectedness: This property measures how many
times substances of a particular connectedness are
amplified in the research literature. More precisely, it
is a measure not of the amplification of the substances
per se, but rather of the statements of which these
substances are a part.

• The average disagreement rate of substances of the
same connectedness: This measure is based on the
ratio of negatively stated molecular interactions
divided by the total number of (positive and negative)
statements on the same molecular interactions. This
ratio is determined for each set of statements about a
particular molecular interaction, which results in an
average disagreement rate for the substances involved
in these interactions. Because the GeneWays system
does not yet extract experimental conditions for
molecular interactions, disagreement between two
statements does not necessarily mean that one of the
statements is false. On the contrary, both statements
may be true under different experimental conditions.
We therefore limited this measure to so-called direct
interactions between two substances, such as phos-
phorylation and acetylation. We assume that these
kinds of interactions hold under all conditions, in
contrast to indirect interactions, such as expression
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Fig. 2. Distribution of waiting times for amplified statements. Results from journal with IF 20–25, n = 1360 (waiting times), (a) exponential
fit, (b) Pareto fit.

Fig. 3. Distribution of waiting times for unique statements. Results from journal with IF 5–10, n = 254 (waiting times), (a) exponential fit,
(b) Pareto fit.

or activation, which are much more likely to be
condition-dependent.

In order to justify our assumption that a Poisson process
could describe the arrival of pathway statements we tried
to fit an exponential distribution

P(x) = δe−δx (8)

to the observed waiting time distributions. To estimate
parameters of the exponential distribution, we used a
maximum likelihood estimation procedure. The likelihood

function is defined in the following way:

L(δ|x1, x2, . . . , xn) = P(x1, x2, . . . , xn|δ) =
n∏

i=1

δe−δxi ,

(9)

where each data point (xi ) corresponds to a single time
interval between two closest consecutive statements pub-
lished in research articles. The estimate of the parameter
δ is obtained by maximizing the logarithm of likelihood
function (we used a MatLab function implementing a sim-
plex search method) and the estimate corresponds to the
value of δ at the maximum of the likelihood function.
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The value of the likelihood function at the point of
maximum is useful in direct comparison to the fit of rival
models (with a close number of parameters) based on
the same data. For example, we compared the maximum
likelihood fit of a Pareto distribution to waiting times data,
as described in Results.

RESULTS AND DISCUSSION
Our analysis favours the conclusion that Poisson mod-
elling adequately portrays generation and amplification
of research ideas in research literature. Figure 2 and
Figure 3 show the distribution of the waiting times of
unique and amplified statements as observed in the 50 000
biological articles. As expected under a Poisson model,
the waiting times between events appear to follow an
exponential distribution, and the maximum likelihood
analysis indicates that the exponential distribution fits
the data significantly better than alternatives, such as a
Pareto distribution. From these data, we have calculated
the Poisson parameters α and γ for unique and amplified
statements, respectively (Table 1). The variances of those
parameters indicate significant differences among the
journals studied.

We hypothesized, tested and confirmed a few properties
of the random process of knowledge generation that could
be useful in future modelling. First, by limiting the anal-
ysis to statements encountered in at least 5 journals, we
found that the connectedness of a substance was signif-
icantly associated (p = 0.016) with amplification rates
of the related statements (see Figure 4) with a correlation
coefficient of 0.20 (95% CI 0.04 to 0.38). We further ob-
served that connectedness was associated (p = 0.016)

Table 1. Estimated parameters for 7 journals ranked according to Impact
Factor (IF). α̂ = the estimated number of unique molecular interactions per
month, γ̂ = the estimated number of amplifications of molecular interactions
per month

Journal I F α̂ 2
√

V̂ ar (̂α) γ̂ 2
√

V̂ ar(γ̂ )

1 40 − 45 0.84 0.31 0.23 6. 0 × 10−2
2 30 − 35 6.65 0.71 0.17 5. 6 × 10−3
3 20 − 25 7.03 0.72 0.20 4. 7 × 10−3
4 10 − 15 4.75 0.60 0.18 5.3 × 10−3
5 5 − 10 15.35 1.03 0.29 2. 0 × 10−3
6 5 − 10 0.50 0.58 0.41 7.6 × 10−2
7 0 − 5 1.04 0.31 0.22 1. 3 × 10−2
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Fig. 5. Journal Impact Factor versus average substance connected-
ness.

with the level of disagreement with a correlation coeffi-
cient of −0.26 (95% CI −0.45 to −0.04), implying that
statements with greater connectedness underwent less dis-
agreement. As described earlier, if connectedness is re-
lated to a subjective measure of importance, these findings
hint at some biases in the reporting of molecular interac-
tions. We extended the latter idea and measured correla-
tions between journal impact factor and connectedness as
well as unique statements that appear in a journal of inter-
est. The hypotheses that journals with a high impact fac-
tor discuss mostly highly connected substances (Figure 5)
or introduce a higher degree of new research ideas, i.e.,
unique statements (Figure 6), appear to have some support
in data, but more journals need to be studied for a statisti-
cally conclusive result.

Molecular interaction data are useful for characteriza-
tion of protein interaction networks (Jeong et al., 2001) or
for inference about properties of model organisms (Karp,
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Fig. 6. Journal Impact Factor versus percentage of unique state-
ments.

2000; Karp et al., 1998) represented in functional ontolo-
gies. A common source of molecular interaction data is
the research literature, and there has been a growing ef-
fort to build systems that can automatically collect such
information (Friedman et al., 2001; Yakushiji et al., 2001;
Thomas et al., 2000; Ng and Wong, 1999; Sekimizu et
al., 1998) directly from the research articles. As research
ideas and results evolve over time, this information repre-
sents a collection of potentially contradicting statements
and opinions. A reasonable hope is that the ‘truth’ can
be inferred from the pooled collection of statements on
the same research topic. While domain experts are usually
good at this task, without a proper computational resolu-
tion of conflicting research results, it is hardly possible to
achieve a useful integration of this tremendously vast and
valuable knowledge.

While, in the long term, aiming at automated resolution
of conflicting research results, this paper describes and
analyses the type and variation of the data typically gen-
erated by such knowledge extraction systems. These data
are rather different from citation studies by tracing spe-
cific research results rather than citations, which describe
much less precisely the content and results of the research
under the study. We thus are able to get a unique glimpse
into how research results and ideas are published and re-
produced in the research literature.

As the most basic assumptions of our Noisy Truth
Generator model appear reasonable from our analysis,
we hope that the model will be useful for calculating
a probability that a set of statements about a certain
molecular interaction is true. In other words, given the
scenario that we have two conflicting statements, such
as ‘A activates B’, which has been stated in fifty articles

appearing in mostly less known journals, and a second
statements, ‘A does not activate B’, which is stated in
ten articles appearing in high impact factor journals, the
model should be able to conclusively tell which one of the
two statements is more likely to be correct.

The analysis of the actual data brings about important
question about distinction between the ‘true statements’
and statements accepted by a research community. It is
quite likely that analysis of textual data alone is sufficient
for inferring the latter, but not the former. However,
as independent high-throughput experimental techniques
deliver additional data, the inference based on integration
of multiple data types should converge to truth.

As this is our first detailed analysis of literature interac-
tion data, many questions need to be further investigated.
For example, we need to address how system recall and
precision influence the results of the analysis. Our system
and the design of the analysis is geared towards high preci-
sion and we expect quanitative changes in parameters such
as the rate of unique statements as we improve the system
recall. Even with higher recall, we expect that our obser-
vations about distributions of waiting times still hold.

There is ample room for modification and adjustment
of the model. For example, one natural extension to the
model would be adding a probabilistic ‘latent phase’
between publication of an original statement and the first
amplification of this statement. This would immediately
allow distinguishing a true original statement with better
precision from an amplification of an older (outside the
scope of the corpus under analysis) original statement.
However, we believe that even the simplest model outlined
in this report is not devoid of utility and interest.

This work was supported by NSF ITR and NIH RO1
awards to A.R.
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